

    
      
          
            
  
PyHab Code Documentation

This is documentation for the code of PyHab. Eventually this will contain all of the documentation for PyHab, but that work is in progress.


Contents:


	Installation

	Quickstart guide
	ManyBabies 4 setup

	Creating a new PyHab project from scratch

	Running the demo or a pre-made PyHab experiment





	Builder

	PyHab Class (base)

	Preferential Looking

	Head-turn Preference Procedure

	Standalone Reliability







Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Installation


	Prerequisites::

	Install the most recent version of PsychoPy (https://www.psychopy.org/download.html).

You will also need VLC media player in order to play media. It is free. (https://www.videolan.org/vlc/index.html)

On Windows, you may need to install some movie codecs into PsychoPy directly. See Windows-specific troubleshooting





Download the latest release of PyHab as a .zip file (https://github.com/jfkominsky/PyHab/releases).

Unzip the folder anywhere you would like. Then, see Quickstart guide




          

      

      

    

  

    
      
          
            
  
Quickstart guide


ManyBabies 4 setup

If you are helping out with the ManyBabies 4 project, there is a video guide to setting up the PyHab version of the ManyBabies 4 experiment [https://youtu.be/4GOnU2f1wks], as well as a ManyBabies 4-specific text setup guide [https://bit.ly/2RyUzLo].



Creating a new PyHab project from scratch


	Open PsychoPy


	
	Go to “View” and select “Coder View”. (You can also hit cmd-L on Mac or ctrl-L on Windows.)

	[image: _images/CoderView.png]






	
	Go to File > Open and find the PyHab folder. Select “NewPyHabProject.py”

	[image: _images/NewPyHabStudy.png]






	This should open a short text script in the coder window. Hit the big green “Run” button.


	Construct your study and save it.


	In the PsychoPy coder, choose “Open”, then find the experiment folder you saved. Open the file “[projectname]Launcher.py”


	Hit the big green run button to open the builder.


	Read the manual (https://github.com/jfkominsky/PyHab/raw/master/PyHab%20User%20Manual.pdf) for more information on how to build an experiment.






Running the demo or a pre-made PyHab experiment


	In coder view, open the experiment’s launcher script. For the demo experiment, in the PyHab folder open “PyHabDemoLauncher.py” in the “PyHabDemo” folder.


	
	Hit the green “Run” button, and you should see a window like this.

	[image: _images/LaunchScr.png]






	If you want to modify anything about the experiment, click the first drop-down menu and select “Builder”, and then click OK. If you want to run the experiment, select whether or not you want it to present stimuli with the second drop-down list, and then hit OK.


	
	The next window that appears will be the subject information window.

	[image: _images/SubjInfo.png]
4a. The first two lines are the subject number and identifier. These are arbitrary, but you need to put something in at least one of them.

4b. The subject sex is entirely optional and can be left blank.

4c. The next three lines are the subject date of birth. These MUST be filled out. Each field takes ONLY two digits. So, for a date of birth of November 12, 2018, you would put 11 in the first box, 12 in the second, and 18 in the third.

4d. The final line is a condition drop-down menu with a list of conditions. If the experiment you are running does not have conditions configured, this will be an arbitrary text box. Otherwise, select the appopriate condition.







	
	Hit OK, and the experiment will launch. You will be presented with the experimenter window. Press “A” to start the first trial and play the attention-getter. Hold “B” whenever the infant is looking at the screen and release it when they are not. Press Y at any time to end the experiment.

	5a. For preferential looking studies, hold “B” when they are looking left and “M” when they are looking right.







	The experiment will notify you when it is saving data and then prompt you to press “return” to close the stimuli and experimenter windows and return to the launcher menu.








          

      

      

    

  

    
      
          
            
  
Builder

The builder code uses PsychoPy’s visual library to create a rudimentary GUI for creating PyHab studies. The GUI itself
mostly consists of clickable shapes that open dialog boxes. The only notable exception is the system for creating
conditions, which creates an entire new UI in the window.

When the builder’s save functions are called, they create a complete, self-contained folder which includes the experiment
setitngs file (a csv), a launcher script, the PyHab module folder with PyHabClass, PyHabClassPL, and PyHabBuilder, and
copies of all of the stimuli and attention-getters to a stimuli folder.


	
class PyHab.PyHabBuilder.PyHabBuilder(loadedSaved=False, settingsDict={})

	Graphical interface for constructing PyHab experiments. Runs mostly on a Pyglet window and qtGUI dialogs.
Saves a settings file in .csv form which can then be read by PyHab Launcher, PyHabClass, PyHabClassPL, and PyHabClassHPP.


	
HPP_stimSettingsDlg()

	A dialog box for the stimulus settings unique to head-turn preference procedures. Just selects the screen to
then open the stimulus dialog window for.


	Returns

	



	Return type

	










	
addStimToLibraryDlg()

	A series of dialog boxes which allows you to build a “library” of stimulus files for your experiment, which you
can then assign to trial types in a separate dialog.

Works a bit like the attention-getter construction dialogs, but different in that it allows audio or images alone.
The image/audio pairs are complicated, but not worth splitting into their own function at this time.


	Returns

	



	Return type

	










	
addStimToTypesDlg()

	A series dialog boxes, the first selecting a trial type and the number of stimuli to add to it,
a second allowing you to add stimuli from the stimulus library that is stimList in the settings.
Also used for adding beginning and end of experiment images


	Returns

	



	Return type

	










	
advTrialDlg(trialType)

	A dialog for advanced trial settings mostly having to do with attention-getters and stimulus presentation

0/-8 = cutoff attention-getter on gaze-on? T/F [if trial has an AG - not always present]

1/-7 = cutoff on-time: How long do they have to look to cut off presentation? [if trial has an AG - not always present]

2/-6 = Pause stimulus presentation when infant is not looking at screen?

3/-5 = Mid-trial AG: Play an attention-getter if infant looks away mid-trial?

4/-4 = mid-trial AG trigger: Minimum time to trigger mid-trial AG

5/-3 = mid-trial AG cutoff: Stop mid-trial AG on gaze-on?

6/-2 = mid-trial AG cutoff ontime

7/-1 = HPP ONLY: Only count gaze-on to stimulus-presenting screen? T/F, casts to hppStimScrOnly


	Parameters

	trialType (str) – The trial type being modified.



	Returns

	



	Return type

	










	
advTrialSetup()

	A function for selecting the trials you want to access the advanced settings of.
Spawns a panel with all the trial types. Reuses code from the block interface.
Doesn’t need to check existence of trials because


	Returns

	



	Return type

	










	
attnGetterAudioDlg()

	A modular dialog for setting the options for an audio-based attention-getter


	Returns

	A dictionary containing all the info required for an audio attention-getter



	Return type

	dict










	
attnGetterDlg()

	The dialog window for customizing the attention-getters available to use for different trials.
Two-stage: Modify existing attngetter or make new, then what do you do with ether of those.
Allows audio with PsychoPy-produced looming shape or just a video file.


	Returns

	



	Return type

	










	
attnGetterMovieAudioDlg()

	A modular dialog for finding an audio file and a video file and titling them appropriately.


	Returns

	A dictionary containing all the info required for a video/audio attngetter.



	Return type

	










	
attnGetterVideoDlg()

	A modular dialog for setting the options for a video-based attention-getter


	Returns

	A dictionary containing all the info required for a video attention-getter



	Return type

	dict










	
autoCond(genTrials, genBlocks, counters)

	The function that actually creates conditions automatically, given what it is generating conditions for, and how
many items from each trial/block it should have in each condition.
Simply sets condDict and condList.


	Parameters

	
	genTrials (bool) – Are we generating conditions for movies within trial types?


	genBlocks (bool) – Are we generating conditions for trials within blocks?


	counters (dict) – A dictionary of each block or trial type that needs to be randomized and the number of items
that thing should have in each condition






	Returns

	



	Return type

	










	
autoCondSetup()

	Function for getting the parameters for automatically generating conditions.
A series of dialogs. The first one, whatGenDlg, determines whether we are doing stim within trials, trials
within blocks, or both. It also determines whether we are keeping all items, which shortcuts the second dialog.
whatGenDlg:
0 (if blocks): Randomize order of stimuli in trials y/n
1 (if blocks): Randomize order of trials in blocks y/n
-1: Keep all items in all conditions y/n

A second dialog then asks whether there are any trial/block types the user does not want to randomize.

If not keeping all items in all conditions, another dialog is needed to determine size of subset for each
trial/block. This produces a dictionary that tracks how many items will be in each condition.
:return:
:rtype:






	
blockDataDlg()

	A dialog for determining whether you save a block data file, and if so which blocks to compress.

Procedurally constructs a set of options such that, for any nested blocks, they are mutually exclusive, but any
blocks that are not part of other blocks and other blocks are not part of them are just check-boxes.

Excludes hab because habituation data files are saved by default.


	Returns

	



	Return type

	










	
blockMaker(blockName, new=True, hab=False)

	For making multi-trial blocks. Or multi-block-blocks. Blocks are necessary for habituation.

Creates a kind of sub-UI that overlays over the main UI. Because it’s just for blocks, we can ditch some things.
We can actually completely overlay the regular UI. Problem is, if the regular UI continues to draw, the mouse
detection will still work, even if a shape is behind another shape. So, like with conditions, we need a totally
parallel UI

Hab blocks cannot be embedded in other blocks.


	Parameters

	
	blockName (str) – Name of new block


	new (bool) – Is this a new block or a modification of an existing one?


	hab (bool) – Is this for a habituation meta-trial? # TODO: No longer needs to be an argument?






	Returns

	



	Return type

	










	
condMaker(rep=False, currPage=1, bc=False, trialMode=True, resetDict={})

	A whole separate interface for managing condition creation.

Outputs settings condList (labels of each condition), condFile (save conditions to this file)
and makes new structure condDict (mapping of each label to actual condition it applies to)


	Parameters

	
	rep (bool) – Basically whether we are recursing while editing conditions


	currPage (int) – The current page number


	bc (bool) – Are we displaying the raw conditions, or the ‘base’ (pre-randomization) conditions?


	trialMode (bool) – A toggle between ‘trial mode’ (use conditions for order of stimuli in trial types) and ‘block mode’ (use conditions to change order of trials within blocks)






	Returns

	



	Return type

	










	
condRandomizer(bcReset=False)

	This is based on other scripts I’ve made. Basically, say you have four conditions, and you want four participants
to be assigned to each one, but you want to be totally blind to which condition a given participant is in. Here,
once you have made your four conditions, you can tell it to create a condition list that it never shows you that
has each condition X times, and that becomes the new condition file/list/etc.


	Parameters

	bcReset (bool) – For the edge case where someone re-loads the base conditions and wants to re-randomize them.



	Returns

	



	Return type

	










	
condSetter(shuffleList, cond='NEW', ex=False, blockmode=False)

	A new interface for ordering stimuli within a trial type or trials within a block for a specific condition.
Increases flexibility and usability. Uses an overlay like the block-constructor interface

ST/PL output: {trialType:[stim1, stim2]}
HPP output: {trialType:[{‘L’:0,’C’:stim1,’R’:0},{}]}


	Parameters

	
	shuffleList (dict) – Either the stimNames dict or the blockList dict. Defines which one we are modifying.


	cond (str) – Condition name


	ex (bool) – Whether the condition already exists


	blockmode (bool) – Are we reordering a block or a trial? Matters because even in HPP need to be blocks






	Returns

	



	Return type

	










	
condSettingsDlg()

	The dialog window for “condition settings”, not to be confused with the
condition interface created by self.condMaker(). This determines whether
condition randomization is used at all, a separate interface is used to
define the conditions themselves.


	Returns

	



	Return type

	










	
dataSettingsDlg()

	Which columns of data are recorded.
Resets if the experiment type is switched to or from preferential looking.


	Returns

	



	Return type

	










	
delCond()

	Present list of existing conditions. Choose one to remove.






	
delTrialTypeDlg()

	Dialog for deleting a trial type, and all instances of that trial type in the study flow


	Returns

	



	Return type

	










	
deleteType(dType)

	Performs the actual deletion of a trial or block type.
TODO: More sophisticated handling of conditions.


	Parameters

	dType (str) – String indicating the name of the trial or block to be deleted



	Returns

	



	Return type

	










	
habSettingsDlg(trialList, lastSet, redo=False)

	Dialog for settings relating to habituation criteria:

0 = habituation (Active/not active)

1 = maxHabTrials (maximum possible hab trials if criterion not met)

2 = setCritWindow (# trials summed over when creating criterion)


	3 = setCritDivisor (denominator of criterion calculation . e.g., sum of first 3 trials

	divided by 2 would have 3 for setCritWindow and 2 for this.)





4 = setCritType (peak window, max trials, first N, last N, or first N above threshold)

5 = habThresh (threshold for N above threshold)

6 = metCritWindow (# trials summed over when evaluating whether criterion has been met)

7 = metCritDivisor (denominator of sum calculated when determining if criterion has been met)

8 = metCritStatic (static or moving window?)

9 = habByDuration (habituation by duration or by on-time)

10-N = Which trials to calculate hab over for multi-trial blocks.


	Parameters

	
	trialList (list) – List of available trials in the block, since this follows from block settings.


	lastSet (dict) – If information entered is invalid and the dialog needs to be shown again, this allows it to remember what was previously entered. Also pulls from existing block settings.


	redo (boolean) – Checking if redoing last setting






	Returns

	A dictionary of settings fed back into the block-maker UI.



	Return type

	dict










	
lastPalettePage()

	Simple function for moving to the previous page of the trial type palette
:return:
:rtype:






	
loadFlow(tOrd, space, locs, overflow, types, conlines=True, trials=True, specNumItems=0)

	Creates the array of objects to be drawn for a study flow or block flow.

Flow dictionary components:
‘lines’: Lines that go between items in the flow, drawn first
‘shapes’: visual.Rect objects
‘text’: visual.textStim objects
‘labels’: Strings that label each trial. Shapes and text are indexted to these, so you can do easy lookup.
‘extras’: Special category for trial pips for blocks.


	Parameters

	
	tOrd (list) – Extant order of trials, either the overall trial order or the block order


	space (list) – The dimensions of the flow part of the UI, typically self.flowArea


	locs (list) – List of locations to draw the items in the flow, if less than 21 items to be drawn


	overflow (list) – List of locations to use when there are more than 21 items, which compacts the rendering.


	types (list) – List of items being put into this flow. Typically the list of trial types, except when making conditions.


	conlines – A special boolean added for cases where we might not want connecting lines between items in the flow, e.g. conditions.


	trials (bool) – A special bool added for cases where we might not be dealing with trial types, to avoid certain pitfalls in conditional logic.


	specNumItems (int) – A special argument for cases where there are weird line overlaps that change the length of things. Defaults to 0, only used when calling recursively.






	Returns

	A dictionary of all of the entities to draw into the block or study flow



	Return type

	dict










	
loadTypes(typeLocations, typeList, page=1)

	This function creates the trial types palette.

Type pallette dictionary components:
‘shapes’: visual.Rect objects
‘text’: visual.TextStim objects
‘labels’: A sort of index for the other two, a plain string labeling the trial or block type.


	Parameters

	
	typeLocations (list) – The array of coordinates on which buttons can be placed. Usually self.typeLocs


	typeList (list) – A list of what is being populated into the array. Usually self.settings[‘trialTypes’]


	page (int) – Page number for when there are more types than fit on one page, in order to render the correct one.






	Returns

	



	Return type

	










	
mainLoop()

	Main loop of the whole program.


	Returns

	



	Return type

	










	
makeBlockDlg(name='', new=True)

	Creates a new ‘block’ structure, which basically masquerades as a trial type in most regards, but consists of
several sub-trials, much like how habituation blocks work.


	Parameters

	
	name (str) – Name of existing trial type. ‘’ by default


	new (bool) – Making a new block, or modifying an existing one?






	Returns

	



	Return type

	










	
moveTrialInFlow(flowIndex, tOrd, flowSpace, UI, flow, types)

	A function for when a trial is clicked in a trial flow, allowing you to either swap it or remove it.


	Parameters

	
	flowIndex (int) – The index in the flowArray of the trial being modified


	tOrd (list) – The trial order being modified, either the main one or a block order


	flowSpace (visual.Rect object) – The shape that makes up the flow UI, which varies from typical usage to block construction


	UI (dict) – A dictionary containing the currently active UI


	flow (dict) – A dictionary containing the currently active trial flow


	types (dict) – A dictionary containing the currently active trial pallette (mostly for showMainUI)






	Returns

	The modified trial order



	Return type

	list










	
nextPalettePage()

	Simple function for moving to the next page of the trial type palette.
:return:
:rtype:






	
quitFunc()

	Simple function for quitting, checks if you want to save first (if there’s anything to save).


	Returns

	



	Return type

	










	
removeStimFromLibrary()

	Presents a dialog listing every item of stimuli in the study library. Allows you to remove any number at once,
removes from all trial types at same time. Deletes from stimuli folder on save if extant.


	Returns

	



	Return type

	










	
run()

	Exists exclusively to be called to start the main loop.


	Returns

	



	Return type

	










	
saveDlg()

	Opens a save dialog allowing you to choose where to save your project.
Essentially sets self.folderPath


	Returns

	



	Return type

	










	
saveEverything()

	Saves a PyHab project to a set of folders dictated by self.folderPath

todo: Add psychopy_tobii_infant to this. Saved in the code folder.


	Returns

	



	Return type

	










	
showMainUI(UI, flow, types)

	A simple function that draws everything and flips the display. Generalized to work for block mode and general mode.


	Parameters

	UI – a dictionary of everything to be drawn in the new UI. Contains a list, ‘bg’ (background), and a dict,





‘buttons’, that has itself ‘shapes’ and ‘text’ (and usually ‘functions’ but this doesn’t need to know that)
:type UI: dict
:param flow: A dict of everything in the  block flow. Contains five lists, ‘lines’, ‘shapes’, ‘text’, ‘labels’, and ‘extra’
:type flow: dict
:param types: A dict of the trial type buttons for this block. Contains three lists: ‘shapes’, ‘text’, and ‘labels’
:type types: dict
:return:
:rtype:






	
stimSettingsDlg(lastSet=[], redo=False, screen='all')

	Settings relating to stimulus presentation. Indexes from the dialog (non-HPP version):

0 = screenWidth: Width of stim window

1 = screenHeight: Height of stim window

2 = Background color of stim window

3 = movieWidth: Width of movieStim3 object inside stim window. Future: Allows for movie default resolution?

4 = movieWidth: Height of movieStim3 object inside stim window

5 = freezeFrame: If the attention-getter is used (for a given trial type), this is the minimum time the first frame
of the movie will be displayed after the attention-getter finishes.

6 = screenIndex: Which screen to display the stim window on.

7 = expScreenIndex: Which screen to display the experimenter window on


	Parameters

	
	lastSet (list) – Optional. Last entered settings, in case dialog needs to be presented again to fix bad entries.


	redo (boolean) – Are we doing this again to fix bad entries?


	screen (string) – Optional. For HPP, lets you set for just the individual screen the settings apply to.






	Returns

	



	Return type

	










	
toHPP()

	A function that converts ST or PL experiments to HPP. Always a little complicated.


	Returns

	



	Return type

	










	
toPL()

	A function that converts ST or HPP to preferential looking. ST to PL is NBD. HPP is more of a challenge.
:return:
:rtype:






	
toST()

	A function that converts PL or HPP to single-target. PL to ST is NBD. HPP is more of a challenge.


	Returns

	



	Return type

	










	
trialTypeDlg(trialType='TrialTypeNew', makeNew=True, prevInfo=[])

	Dialog for creating OR modifying a trial type. Allows you to set
the maximum duration of that trial type as well as remove movies
from it, and also set whether the trial type is gaze contingent.
Now also sets whether the study should auto-advance into this
trial and whether the built-in attention-getter should be used.

The dialog by default outputs a list with 12 items in it.
0 = trial type name

1 = Maximum duration of trials of this type

2 = Gaze-contingent trial type?

3 = Maximum continuous looking-away to end trial of type

4 = Minimum on-time (cumulative)

5 = auto-redo trial if minimum on-time not met?

6 = on-time deadline

7 = duration criterion rather than on-time

8 = Auto-advance into trial?

9 = Attention-getter selection

10 = End trial on movie end or mid-movie

11 = inter-stimulus interveral (ISI) for this trial type

12 = Maximum on-time (single use case, for new gaze contingent trial type mode).

[if movies assigned to trial type already, they occupy 13 - N]


	Parameters

	
	trialType (str) – Name of the trial type


	makeNew (bool) – Making a new trial type or modifying an existing one?


	prevInfo (list) – If user attempts to create an invalid trial type, the dialog is re-opened with the previously entered information stored and restored






	Returns

	



	Return type

	










	
univSettingsDlg()

	Settings that apply to every PyHab study regardless of anything else.

0 = prefix: The prefix of the launcher and all data files.


	1 = blindPres: Level of experimenter blinding, 0 (none), 1 (no trial type info), or

	2 (only info is whether a trial is currently active.



	2 = nextFlash: Whether to have the coder window flash to alert the experimenter they need to manually trigger

	the next trial





3 = durationInclude: Trial duration calculations include last gaze-off or not


	4 = loadSeparate: New setting in 0.9.4, movie playback issues have created a situation where some (but not all)

	experiments might benefit from going back to the old ways of loading one movie file for each individual
instance of a trial, rather than trying to load one movie file and load it once. This setting controls
whether that happens.



	5 = eyetracker: New in 0.10.4, Tobii integration (which is much more seamless than alternatives). Can be set

	to simply record eye-tracking info OR to control the experiment as a replacement for a human coder. (0/1/2)






	Returns

	



	Return type

	
















          

      

      

    

  

    
      
          
            
  
PyHab Class (base)

This is the base class that is used to actually run PyHab studies. There is an extension of this base class for
preferential looking paradigms, see Preferential Looking


	
class PyHab.PyHabClass.PyHab(settingsDict, testMode=False)

	PyHab looking time coding + stimulus control system

Jonathan Kominsky, 2016-2018

Keyboard coding: A = ready, B = coder 1 on, L = coder 2 on, R = abort trial, Y = end experiment (for fussouts)

Between-trials: R = redo previous trial, J = jump to test trial, I = insert additional habituation trial (hab only)

Throughout this script, win2 is the coder display, win is the stimulus presentation window.
dataMatrix is the primary data storage for the summary data file. It is a list of dicts, each
dict corresponds to a trial.

Anything called “verbose” is part of the verbose data file. There are up to four such structures:
On (for gaze-on events)
Off (for gaze-off events)
On2 and Off2 (for the optional secondary coder)
Each coder’s on and off are recorded in a separate dict with trial, gaze on/off, start, end, and duration.


	
SetupWindow()

	Sets up the stimulus presentation and coder windows, loads all the stimuli, then starts the experiment
with doExperiment()


	Returns

	



	Return type

	










	
TrackerCalibrateValidate()

	Function that controls the eye-tracker calibration and validation in eye-tracking modes.
In principle this can be run mid-experiment, but it will be disruptive


	Returns

	



	Return type

	










	
abortTrial(onArray, offArray, trial, ttype, onArray2, offArray2, stimName='', habTrialNo=0, habCrit=0.0)

	Only happens when the ‘abort’ button is pressed during a trial. Creates a “bad trial” entry
out of any data recorded for the trial so far, to be saved later.


	Parameters

	
	onArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on events for coder 1


	offArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-off events for coder 1


	trial (int) – trial number


	ttype (string) – trial type


	onArray2 (list of dicts) – Gaze-on events for (optional) coder 2


	offArray2 (list of dicts) – Gaze-off events for (optional) coder 2


	stimName (string) – If presenting stimuli, name of the stim file


	habTrialNo (int) – Tracking if this is a habituation trial and if so what number


	habCrit (float) – Habituation criterion, if it’s been set






	Returns

	



	Return type

	










	
attnGetter(trialType, cutoff=False, onmin=0.0, midTrial=False)

	Plays either a default attention-getter animation or a user-defined one.
Separate settings for audio w/shape and video file attention-getters.


	Parameters

	
	trialType (string) – Current trial type


	cutoff (bool) – Cut off AG immediately on gaze-on? Defaut False


	onmin (float) – Delay in listening for gaze-on to immediately end AG. Default 0


	midTrial (bool) – Is this a mid-trial attention-getter? Default False






	Returns

	



	Return type

	










	
avgObsAgree(timewarp, timewarp2)

	Computes average observer agreement as agreement in each trial, divided by number of trials.


	Parameters

	
	timewarp (list) – List of every individual frame’s gaze-on/gaze-off code for coder A


	timewarp2 (list) – As above for coder B






	Returns

	average observer agreement or N/A if no valid data



	Return type

	float










	
blockExpander(blockInfo, prefixes, hab=False, habNum=0, insert=-1, baseStart=-1)

	A method for constructing actualTrialOrder while dealing with recursive blocks. Can create incredibly long trial
codes, but ensures that all information is accurately preserved. Works for both hab blocks and other things.

For hab blocks, we can take advantage of the fact that hab cannot appear inside any other block. It will always
be the top-level block, and so we can adjust the prefix once and it will carry through.

The trial naming preserves hierarchy in a block.trial or block.subblock.trial form.
Hab blocks are designated by a ‘*’ before the first ‘.’, and the last trial in a hab block
is marked with ‘^’, which is needed to trip checkStop.

Because hab blocks cannot be embedded in other blocks, the top-level block is always the one with the hab settings.


	Parameters

	
	blockInfo (dict) – The data of the block object, including trialList and hab info.


	prefixes (str) – A recursively growing stack of prefixes. If block A has B and block B has C, then an instance of A will be A.B.C in self.actualTrialOrder. This keeps track of the A.B. part.


	hab (bool) – Are we dealing with a habituation trial expansion?


	habNum (int) – If we are dealing with a habituation trial expansion, what hab iteration of it are we on?


	insert (int) – An int specifying where in actualTrialOrder to put a trial. Needed to generalize this function for insertHab


	baseStart (int) – Marks the index where the top-level block started in actualTrialOrder.






	Returns

	



	Return type

	










	
checkStop(blockName)

	After a hab trial, checks the habitution criteria and returns ‘true’ if any of them are met.
Also responsible for setting the habituation criteria according to settings.
Prior to any criteria being set, self.HabCrit is 0, and self.habSetWhen is -1.

Uses a sort of parallel data structure that just tracks hab-relevant gaze totals. As a bonus, this means it now
works for both single-target and preferential looking designs (and HPP designs) with no modification.

To support multiple hab blocks, this needs to take the block name as an argument, to only look at that block’s hab settings.
That means each block with habituation turned on can only be used once, but you can have more than one block


	Parameters

	blockName (str) – The name of the block associated with the hab trial, required to look up its particular settings.



	Returns

	True if hab criteria have been met, False otherwise



	Return type

	bool










	
cohensKappa(timewarp, timewarp2)

	Computes Cohen’s Kappa


	Parameters

	
	timewarp (list) – List of every individual frame’s gaze-on/gaze-off code for coder A


	timewarp2 (list) – As above for coder B






	Returns

	Kappa



	Return type

	float










	
dataRec(onArray, offArray, trial, type, onArray2, offArray2, stimName='', habTrialNo=0, habCrit=0.0)

	Records the data for a trial that ended normally.


	Parameters

	
	onArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on events for coder 1


	offArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-off events for coder 1


	trial (int) – trial number


	type (string) – trial type


	onArray2 (list) – Gaze-on events for (optional) coder 2


	offArray2 (list) – Gaze-off events for (optional) coder 2


	stimName (string) – If presenting stimuli, name of the stim file


	habTrialNo (int) – If part of a hab block, what hab trial it was part of.


	habCrit (double) – If part of a hab block, the current habituation criterion.






	Returns

	



	Return type

	










	
dispAnimationStim(trialType, dispAnim, screen='C')

	Placeholder function for displaying an animation. Requires some code customization to use. Create an experiment
then go into its copy of PyHabClass and modify it to have different animation routines based on dispAnim. Note
that the objects for the animations need to be created in SetupWindow.

You can feel free to use self.frameCount[screen] to regulate your animations and reset is as needed.
A demo animation is written below but never referenced.


	Parameters

	
	trialType (str) – the current trial type


	dispAnim (str) – Name of the animation to display


	screen (str) – Which screen to display on (matters for HPP)






	Returns

	int specifying animation in progress (0), paused on last frame (1), or ending and looping (2)



	Return type

	int










	
dispAudioStim(trialType, dispAudio)

	For playing audio stimuli. A little more complicated than most because it needs to track whether the audio
is playing or not. Audio plays separately from main thread.


	Parameters

	dispAudio (sound.Sound object) – the stimuli as a sound.Sound object



	Returns

	an int specifying whether the audio is in progress (0), we are in an ISI (1),
or the audio is looping (2)



	Return type

	int










	
dispCoderWindow(trialType=-1)

	Draws the coder window, according to trial type and blinding settings.


	Parameters

	trialType (int or string) – -1 = black (betwen trials). 0 = ready state. Otherwise irrelevant.



	Returns

	



	Return type

	










	
dispImageStim(dispImage, screen='C')

	Very simple. Draws still-image stimuli and flips window


	Parameters

	
	dispImage (visual.ImageStim object) – the visual.ImageStim object


	screen (str) – For HPP, which screen the image is to appear on






	Returns

	constant, 1



	Return type

	int










	
dispMovieStim(trialType, dispMovie, screen='C')

	Draws movie stimuli to the stimulus display, including movie-based attention-getters.


	Parameters

	
	trialType (int or str) – 0 for paused, otherwise a string


	dispMovie (moviestim3 object) – The moviestim3 object for the stimuli


	screen (str) – The screen on which the movie should display. Only relevant for HPP.






	Returns

	an int specifying whether the movie is in progress (0), paused on its last frame (1), or ending and looping (2)



	Return type

	int










	
dispTrial(trialType, dispMovie=False)

	Draws each frame of the trial. For stimPres, returns a movie-status value for determining when the movie has
ended


	Parameters

	
	trialType (string) – Current trial type


	dispMovie (bool or dict) – A dictionary containing both the stimulus type and the object with the stimulus file(s) (if applicable)






	Returns

	1 or 0. 1 = end of movie for trials that end on that.



	Return type

	int










	
doExperiment()

	The primary control function and main trial loop.


	Returns

	



	Return type

	










	
doTrial(number, ttype, disMovie)

	Control function for individual trials, to be called by doExperiment
Returns a status value (int) that tells doExperiment what to do next

self.playThrough registers the end-trial crieria
0 = standard “cumulative on-time >= MinOn and consecutive off-time >= MaxOff”
1 = “OnOnly”, only requires that cumulative on-time > MinOn
2 = “None”, plays to max duration no matter what.
3 = “Either/or”, as standard but with “or” instead of “and”. Whichever comes first.


	Parameters

	
	number (int) – Trial number


	ttype (string) – Trial type - the full expanded one with block hierarchy and hab trial info included.


	disMovie (dictionary) – A dictionary as follows {‘stim’:[psychopy object for stimulus presentation], ‘stimType’:[movie,image,audio, pair]}






	Returns

	int, 0 = proceed to next trial, 1 = hab crit met, 2 = end experiment, 3 = trial aborted



	Return type

	










	
endExperiment()

	End experiment, save all data, calculate reliability if needed, close up shop. Displays “saving data” and
end-of-experiment screen.


	Returns

	



	Return type

	










	
flashCoderWindow(rep=False)

	Flash the background of the coder window to alert the experimenter they need to initiate the next trial.
.2 seconds of white and black, flashed twice. Can lengthen gap between trial but listens for ‘A’ on every flip.


	Returns

	



	Return type

	










	
insertHab(tn, block, hn=-1)

	Literally insert a new hab trial or meta-trial into actualTrialOrder, get the right movie, etc.


	Parameters

	
	tn (int) – trial number to insert the trial


	hn – HabCount number to insert the hab trial. By default, whatever the current habcount is. However, there








are edge cases when recovering from “redo” trials when we want to throw in a hab trial further down the line.
:type hn: int
:param block: The habituation block the trial is being added to
:type block: str
:return: [disMovie, trialType], the former being the movie file to play if relevant, and the latter being the new trial type
:rtype: list






	
isInt()

	silly little function for validating a very narrow usage of “cond” field


	Returns

	Bool: if arbitrary argument t is an int, true.



	Return type

	










	
jumpToTest(tn, block, met=False)

	Jumps out of a hab block into whatever the first trial after the current hab block.


	Parameters

	
	tn (int) – current trial number when the function is called


	block (str) – Block the habituation belongs to. Find end of block, done, because hab blocks can’t be embedded and each one can only occur in the flow once.


	met (bool) – A boolean for whether this is because of J (False) or whether this is a genuine hab-criterion-met






	Returns

	[disMovie, trialType] as insertHab, the former being the movie file to play if relevant, and the latter being the new trial type



	Return type

	list










	
loadStim(stim, screen='C')

	A general function for loading stimuli that can be called repeatedly.

TODO: Windows audio bug when loading an audio file before a movie file means that we should change load order for everything to movie first.


	Parameters

	
	stim (str) – stimulus name, key for stimList dict


	screen (str) – Screen to load stimuli to, doesn’t matter except for HPP, defaults to center






	Returns

	a dictionary with type and stimulus object



	Return type

	dict










	
lookKeysPressed()

	A simple boolean function to allow for more modularity with preferential looking
Basically, allows you to set an arbitrary set of keys to start a trial once the attngetter has played.
In this case, only B (coder A on) is sufficient.

This function can become the eye-tracker interface, basically. It will listen for the eye-tracker input.

Todo: Can we implement a debug mode that simulates key-presses for some amount of time?


	Returns

	True if the B key is pressed, False otherwise.



	Return type

	bool










	
lookScreenKeyPressed(screen=['C'])

	A function that primarily exists for HPP, because of the need to distinguish between any key
being pressed and the key corresponding to the HPP screen in question being pressed


	Parameters

	screen (list of strings) – List of screens for next stim.



	Returns

	for non-HPP versions, the value of lookKeysPressed.



	Return type

	bool










	
pearsonR(verboseMatrix, verboseMatrix2)

	Computes Pearson’s R


	Parameters

	
	verboseMatrix (dict) – Verbose data, coder A


	verboseMatrix2 (dict) – Verboase data, coder B






	Returns

	Pearson’s R



	Return type

	float










	
printCurrentData()

	A function which prints the current data to the output window, made into its own function to facilitate having
working versions for PL and HPP studies as well. Only called when stimulus presentation is off.


	Returns

	



	Return type

	










	
redoSetup(tn, autoAdv, blockName, blockRedo=False, fromAbort=False)

	Lays the groundwork for redoTrial, including correcting the trial order, selecting the right stim, etc.


	Parameters

	
	tn (int) – Trial number (trialNum), to be redone (or in the process of being aborted)


	autoAdv (list) – The current auto-advance trial type list (different on first trial for Reasons)


	blockName (str) – Pulls topBlockName from doExperiment to deal with redoing block and habituations.


	blockRedo (bool) – A special type of redo reserved for blocks, that rewinds to the start of the top-level block.


	fromAbort (bool) – A bool for blockRedos, to see if this is coming off a redo, which requires an extra check.






	Returns

	list, [disMovie, trialNum], the former being the movie file to play if relevant, and the latter being the new trial number



	Return type

	










	
redoTrial(trialNum)

	Allows you to redo a trial after it has ended. Similar to abort trial, but under
the assumption that the data has already been recorded and needs to be replaced.

This function only handles the data part. The actual re-assignment of the trial
is done elsewhere.


	Parameters

	trialNum (int) – Trial number to redo



	Returns

	



	Return type

	










	
reliability(verboseMatrix, verboseMatrix2)

	Calculates reliability statistics. Constructed originally by Florin Gheorgiu for PyHab,
modified by Jonathan Kominsky.


	Parameters

	
	verboseMatrix (list) – A 2-dimensional list with the content of the verbose data file for coder 1


	verboseMatrix2 (list) – A 2-dimensional list with the content of the verbose data file for coder 2






	Returns

	A dict of four stats in float form (weighted % agreement, average observer agreement, Cohen’s Kappa, and Pearson’s R)



	Return type

	dict










	
run(testMode=[])

	Startup function. Presents subject information dialog to researcher, reads and follows settings and condition
files. Now with a testing mode to allow us to skip the dialog and ensure the actualTrialOrder structure is being
put together properly in unit testing.

Also expands habituation blocks appropriately and tags trials with habituation iteration number as well as
the symbol for the end of a hab block (^)


	Parameters

	testMode (list) – Optional and primarily only used for unit testing. Will not launch the window and start the experiment. Contains all the info that would appear in the subject info dialog.



	Returns

	



	Return type

	










	
saveBlockFile()

	A function that create a block-level summary file and saves it. Copies the primary data matrix (only good trials)
and loops over it, compressing all blocks. Does not work for habs, which follow their own rules.


	Returns

	A condensed copy of dataMatrix with all blocks of the relevant types condensed to one line.



	Return type

	list










	
saveHabFile()

	Creates a habituation summary data file, which has one line per hab trial, and only looks at parts of the hab
trial that were included in calcHabOver. This is notably easier in some ways because the hab trials are already
tagged in dataMatrix


	Returns

	A condensed copy of dataMatrix with all hab trials condensed only to those that were used to compute habituation.



	Return type

	list










	
wPA(timewarp, timewarp2)

	Calculates weighted percentage agreement, computed as number of agreement frames over total frames.


	Parameters

	
	timewarp (list) – List of every individual frame’s gaze-on/gaze-off code for coder A


	timewarp2 (list) – As above for coder B






	Returns

	Weighted Percentage Agreement



	Return type

	float
















          

      

      

    

  

    
      
          
            
  
Preferential Looking

This class is an extension of the PyHab Class (base) base class.


	
class PyHab.PyHabClassPL.PyHabPL(settingsDict, testMode=False)

	A new preferential-looking version of PyHab that extends the base class rather than being a wholly separate class.
There’s still a lot of redundant code here, which will require significant restructuring of the base class to fix.


	
abortTrial(onArray, offArray, trial, ttype, onArray2, stimName='', habTrialNo=0, habCrit=0.0)

	Aborts a trial in progress, saves any data recorded thus far to the bad-data structures


	Parameters

	
	onArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Left events


	offArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-off events


	trial (int) – Trial number


	ttype (string) – Trial type


	onArray2 (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Right events


	stimName (string) – If presenting stimuli, name of the stim file


	habTrialNo (int) – Tracking if this is a habituation trial and if so what number


	habCrit (float) – Habituation criterion, if it’s been set






	Returns

	



	Return type

	










	
dataRec(onArray, offArray, trial, type, onArray2, stimName='', habTrialNo=0, habCrit=0.0)

	Records the data for a trial that ended normally.


	Parameters

	
	onArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Left events


	offArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-off events


	trial (int) – Trial number


	ttype (string) – Trial type


	onArray2 (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Right events


	stimName (string) – If presenting stimuli, name of the stim file


	habTrialNo (int) – Tracking if this is a habituation trial and if so what number


	habCrit (float) – Habituation criterion, if it’s been set






	Returns

	



	Return type

	










	
doTrial(number, ttype, disMovie)

	Control function for individual trials, to be called by doExperiment
Returns a status value (int) that tells doExperiment what to do next


	Parameters

	
	number (int) – Trial number


	ttype (string) – Trial type


	disMovie (dictionary) – A dictionary as follows {‘stim’:[psychopy object for stimulus presentation], ‘stimType’:[movie,image,audio, pair]}






	Returns

	int, 0 = proceed to next trial, 1 = hab crit met, 2 = end experiment, 3 = trial aborted



	Return type

	










	
endExperiment()

	End experiment, save all data, calculate reliability if needed, close up shop
:return:
:rtype:






	
lookKeysPressed()

	A simple boolean function to allow for more modularity with preferential looking
Basically, allows you to set an arbitrary set of keys to start a trial once the attngetter has played.
In this case, only B or M are sufficient.


	Returns

	True if the B or M key is pressed, False otherwise.



	Return type

	










	
printCurrentData()

	Prints the current data, preferential looking variant. Only called when stimulus presentation is off
:return:
:rtype:












          

      

      

    

  

    
      
          
            
  
Head-turn Preference Procedure

This class is an extension of the PyHab Class (base) base class.


	
class PyHab.PyHabClassHPP.PyHabHPP(settingsDict, testMode=False)

	A head-turn preference procedure version of PyHab. Uses some of the same code, but drastically more complex, needing
to juggle which screen things are presented on, simultaneous presentation on multiple screens, and more.


	
SetupWindow()

	An HPP-specific version of the function that sets up the windows and loads everything. With four windows to set
up it’s a real doozy, and has the added problem of needing to assign things properly to each window for stim
presentation.

TODO: Windows audio bug when loading an audio file before a movie means that we should change load order to movie first


	Returns

	



	Return type

	










	
abortTrial(onArray, offArray, trial, ttype, onArrayL, onArrayR, stimName='', habTrialNo=0, habCrit=0.0)

	Aborts a trial in progress, saves any data recorded thus far to the bad-data structures


	Parameters

	
	onArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Center events


	offArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-off events


	trial (int) – Trial number


	ttype (string) – Trial type


	onArrayL (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Left events


	onArrayR (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Right events


	stimName (string) – If presenting stimuli, name of the stim file


	habTrialNo (int) – Tracking if this is a habituation trial and if so what number


	habCrit (float) – Habituation criterion, if it’s been set






	Returns

	



	Return type

	










	
dataRec(onArray, offArray, trial, type, onArrayL, onArrayR, stimName='', habTrialNo=0, habCrit=0.0)

	Records the data for a trial that ended normally.


	Parameters

	
	onArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Center events


	offArray (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-off events


	trial (int) – Trial number


	ttype (string) – Trial type


	onArrayL (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Left events


	onArrayR (list of dicts {trial, trialType, startTime, endTime, duration}) – Gaze-on Right events


	stimName (string) – If presenting stimuli, name of the stim file


	habTrialNo (int) – Tracking if this is a habituation trial and if so what number


	habCrit (float) – Habituation criterion, if it’s been set






	Returns

	



	Return type

	










	
dispCoderWindow(trialType=-1)

	Because there are three looking keys, the experimenter window has three boxes. Also things work differently with
there being no ‘secondkey’ really.
:param trialType:
:type trialType:
:return:
:rtype:






	
dispTrial(trialType, dispMovie=False)

	An HPP-specific version of dispTrial that can display on multiple things, read the new stimDict, etc.


	Parameters

	
	trialType (str) – The trial type of the current trial being displayed


	dispMovie (bool or dict) – Now a dictionary C/L/R each index of which contains what this function expects in the base class






	Returns

	1 or 0. 1 = end of movie for trials that end on that. TODO: for HPP currently returns 1 if EVERYTHING IN IT is done.



	Return type

	int










	
doTrial(number, ttype, disMovie)

	Control function for individual trials, to be called by doExperiment
Returns a status value (int) that tells doExperiment what to do next
HPP experiments works very differently from everything else, and this is where the bulk of that is happening.


	Parameters

	
	number (int) – Trial number


	ttype (string) – Trial type


	disMovie (dict) – A dictionary with three indexes, one per screen. Any screen with stimuli on it will have a dictionary {stimType:,stim:}






	Returns

	int, 0 = proceed to next trial, 1 = hab crit met, 2 = end experiment, 3 = trial aborted



	Return type

	










	
endExperiment()

	End experiment, save all data, calculate reliability if needed, close up shop
:return:
:rtype:






	
lookKeysPressed()

	A simple boolean function to allow for more modularity with preferential looking
Basically, allows you to set an arbitrary set of keys to start a trial once the attngetter has played.
In this case, any of V, B, or N are sufficient.


	Returns

	True if the V, B, or N key is pressed, False otherwise.



	Return type

	










	
lookScreenKeyPressed(screen=['C'])

	A function that primarily exists for HPP, because of the need to distinguish between any key
being pressed and the key corresponding to the HPP screen in question being pressed


	Parameters

	screen (list of strings) – List of screens for next stim.



	Returns

	for non-HPP versions, the value of lookKeysPressed.



	Return type

	bool










	
printCurrentData()

	Prints current data to output window, HPP variant. Only called when stimulus presentation is off.


	Returns

	



	Return type

	
















          

      

      

    

  

    
      
          
            
  
Standalone Reliability


	
class StandaloneReliability

	This script is simply the reliability function from PyHab Class (base) but run over two arbitrary verbose data
files.


	
PyHab.avgObsAgree(timewarp, timewarp2)

	Computes average observer agreement as agreement in each trial, divided by number of trials.


	Parameters

	
	timewarp (list) – List of every individual frame’s gaze-on/gaze-off code for coder A


	timewarp2 (list) – As above for coder B






	Returns

	average observer agreement or N/A if no valid data



	Return type

	float










	
PyHab.cohensKappa(timewarp, timewarp2)

	Computes Cohen’s Kappa


	Parameters

	
	timewarp (list) – List of every individual frame’s gaze-on/gaze-off code for coder A


	timewarp2 (list) – As above for coder B






	Returns

	Kappa



	Return type

	float










	
PyHab.pearsonR(verboseMatrix, verboseMatrix2)

	Computes Pearson’s R


	Parameters

	
	verboseMatrix (dict) – Verbose data, coder A


	verboseMatrix2 (dict) – Verboase data, coder B






	Returns

	Pearson’s R



	Return type

	float










	
PyHab.wPA(timewarp, timewarp2)

	Calculates weighted percentage agreement, computed as number of agreement frames over total frames.


	Parameters

	
	timewarp (list) – List of every individual frame’s gaze-on/gaze-off code for coder A


	timewarp2 (list) – As above for coder B






	Returns

	Weighted Percentage Agreement



	Return type

	float
















          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 


A


  	
      	abortTrial() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


        	(PyHab.PyHabClassPL.PyHabPL method)


      


      	addStimToLibraryDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	addStimToTypesDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	advTrialDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	advTrialSetup() (PyHab.PyHabBuilder.PyHabBuilder method)


      	attnGetter() (PyHab.PyHabClass.PyHab method)


  

  	
      	attnGetterAudioDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	attnGetterDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	attnGetterMovieAudioDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	attnGetterVideoDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	autoCond() (PyHab.PyHabBuilder.PyHabBuilder method)


      	autoCondSetup() (PyHab.PyHabBuilder.PyHabBuilder method)


      	avgObsAgree() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClass.StandaloneReliability.PyHab method)


      


  





B


  	
      	blockDataDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  

  	
      	blockExpander() (PyHab.PyHabClass.PyHab method)


      	blockMaker() (PyHab.PyHabBuilder.PyHabBuilder method)


  





C


  	
      	checkStop() (PyHab.PyHabClass.PyHab method)


      	cohensKappa() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClass.StandaloneReliability.PyHab method)


      


  

  	
      	condMaker() (PyHab.PyHabBuilder.PyHabBuilder method)


      	condRandomizer() (PyHab.PyHabBuilder.PyHabBuilder method)


      	condSetter() (PyHab.PyHabBuilder.PyHabBuilder method)


      	condSettingsDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  





D


  	
      	dataRec() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


        	(PyHab.PyHabClassPL.PyHabPL method)


      


      	dataSettingsDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	delCond() (PyHab.PyHabBuilder.PyHabBuilder method)


      	deleteType() (PyHab.PyHabBuilder.PyHabBuilder method)


      	delTrialTypeDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	dispAnimationStim() (PyHab.PyHabClass.PyHab method)


      	dispAudioStim() (PyHab.PyHabClass.PyHab method)


  

  	
      	dispCoderWindow() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


      


      	dispImageStim() (PyHab.PyHabClass.PyHab method)


      	dispMovieStim() (PyHab.PyHabClass.PyHab method)


      	dispTrial() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


      


      	doExperiment() (PyHab.PyHabClass.PyHab method)


      	doTrial() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


        	(PyHab.PyHabClassPL.PyHabPL method)


      


  





E


  	
      	endExperiment() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


        	(PyHab.PyHabClassPL.PyHabPL method)


      


  





F


  	
      	flashCoderWindow() (PyHab.PyHabClass.PyHab method)


  





H


  	
      	habSettingsDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  

  	
      	HPP_stimSettingsDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  





I


  	
      	insertHab() (PyHab.PyHabClass.PyHab method)


  

  	
      	isInt() (PyHab.PyHabClass.PyHab method)


  





J


  	
      	jumpToTest() (PyHab.PyHabClass.PyHab method)


  





L


  	
      	lastPalettePage() (PyHab.PyHabBuilder.PyHabBuilder method)


      	loadFlow() (PyHab.PyHabBuilder.PyHabBuilder method)


      	loadStim() (PyHab.PyHabClass.PyHab method)


      	loadTypes() (PyHab.PyHabBuilder.PyHabBuilder method)


  

  	
      	lookKeysPressed() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


        	(PyHab.PyHabClassPL.PyHabPL method)


      


      	lookScreenKeyPressed() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


      


  





M


  	
      	mainLoop() (PyHab.PyHabBuilder.PyHabBuilder method)


  

  	
      	makeBlockDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	moveTrialInFlow() (PyHab.PyHabBuilder.PyHabBuilder method)


  





N


  	
      	nextPalettePage() (PyHab.PyHabBuilder.PyHabBuilder method)


  





P


  	
      	pearsonR() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClass.StandaloneReliability.PyHab method)


      


      	printCurrentData() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


        	(PyHab.PyHabClassPL.PyHabPL method)


      


  

  	
      	PyHab (class in PyHab.PyHabClass)


      	PyHabBuilder (class in PyHab.PyHabBuilder)


      	PyHabHPP (class in PyHab.PyHabClassHPP)


      	PyHabPL (class in PyHab.PyHabClassPL)


  





Q


  	
      	quitFunc() (PyHab.PyHabBuilder.PyHabBuilder method)


  





R


  	
      	redoSetup() (PyHab.PyHabClass.PyHab method)


      	redoTrial() (PyHab.PyHabClass.PyHab method)


      	reliability() (PyHab.PyHabClass.PyHab method)


  

  	
      	removeStimFromLibrary() (PyHab.PyHabBuilder.PyHabBuilder method)


      	run() (PyHab.PyHabBuilder.PyHabBuilder method)

      
        	(PyHab.PyHabClass.PyHab method)


      


  





S


  	
      	saveBlockFile() (PyHab.PyHabClass.PyHab method)


      	saveDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


      	saveEverything() (PyHab.PyHabBuilder.PyHabBuilder method)


      	saveHabFile() (PyHab.PyHabClass.PyHab method)


  

  	
      	SetupWindow() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClassHPP.PyHabHPP method)


      


      	showMainUI() (PyHab.PyHabBuilder.PyHabBuilder method)


      	StandaloneReliability (built-in class)


      	stimSettingsDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  





T


  	
      	toHPP() (PyHab.PyHabBuilder.PyHabBuilder method)


      	toPL() (PyHab.PyHabBuilder.PyHabBuilder method)


  

  	
      	toST() (PyHab.PyHabBuilder.PyHabBuilder method)


      	TrackerCalibrateValidate() (PyHab.PyHabClass.PyHab method)


      	trialTypeDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  





U


  	
      	univSettingsDlg() (PyHab.PyHabBuilder.PyHabBuilder method)


  





W


  	
      	wPA() (PyHab.PyHabClass.PyHab method)

      
        	(PyHab.PyHabClass.StandaloneReliability.PyHab method)


      


  







          

      

      

    

  

    
      
          
            
  
Backwards compatibility in PsychoPy3 2020.1.0 and 2020.1.1

Note: This has been fixed as of PsychoPy 2020.1.3, it is strongly recommended you update to that version of PsychoPy

Versions 2020.1.0 and 2020.1.1 of PsychoPy have a quirk that will break PyHab experiments made in versions prior to 0.9. The good news is that it is easily fixed. The short explanation is that these two versions of PsychoPy (but not those before and probably not those after) change the “working directory” of the script when you run it. Whereas PyHab expects the working directory to be the experiment folder, 2020.1.0 and 2020.1.1 move it somewhere else. The solution is simply to tell PsychoPy to put it back in the same folder as the experiment launcher.
In order to do this, open your experiment’s launcher file. On line 7 (the line after “import csv, os”), paste the following:

os.chdir(os.path.dirname(os.path.realpath(__file__)))

Save the launcher, and you’re good to go. Experiments made in version 0.9 have this built in, and versions of PsychoPy after 2020.1.1 should change this behavior back to the way it was before, but in this very narrow window, if you need to make a pre-0.9 experiment run in PsychoPy3 2020.1.0 or 2020.1.1, this is what you need.




          

      

      

    

  

    
      
          
            
  
Windows-specific troubleshooting

There are a couple of issues you may run into on Windows specifically, but they all have relatively straightforward solutions.


	Universal suggestions::

	Always run PsychoPy as an administrator. Otherwise you may get “permissions errors” whenever it tries to do anything, but especially when it tries to save files.

You can set PsychoPy to always run as administrator by right-clicking on the program icon and going into its properties.

Running PyHab off a network drive is not recommended. Some labs have reported that even when running as administrator, it will not save files correctly if it is not running from a local drive.







Problems playing movies

There are two major classes of errors you are likely to run into:


	Problem #1: Crashes on “Loading Movies” with errors that mention “Memory” or “Overflow”, or no error messages at all. This means you don’t have enough RAM for the movies you are trying to play::

	Explanation: The way PsychoPy plays media on Windows is extraordinarily inefficient, for some reason. Even if you have a lot of RAM, long experiments with long movie files can sometimes exceed your computer’s capacity.

Try re-encoding your movies in different formats that are more memory efficient (h.264, MPEG-4), making them lower-resolution, or cutting down their framerate.



	Problem #2: Crashes on “Loading Movies” with errors that include “imageio.core.fetching.NeedDownloadError: Need ffmpeg exe.”::

	Explanation: This is a codec which needs to be install into PsychoPy directly, but it can be done from the coder interface relatively easily and only needs to be done once per computer.


	Make sure you are running PsychoPy as an administrator.


	
	In the lower part of the PsychoPy coder window, there are two tabs, “Output” and “Shell”. Click “Shell” and you should see something like this:

	[image: _images/ShellTab.png]






	At the >>>, type (without quotes): “import imageio” and hit return.


	At the >>>, type (without quotes) “imageio.plugins.ffmpeg.download()” and hit return. This will cause a bunch of text to appear. Let it do its thing, it may take a few seconds.


	When it gets back to the >>> prompt, go back to the “Output” tab, and then try running the experiment again. It should now work. If not, it failed to install the codec, and you’ll need to try the above steps again (make sure the commands are entered properly, and if it gives you a “permissions error”, make sure you are running as an administrator).











          

      

      

    

  _images/LaunchScr.png
PyHab Launcher

Current setings file: PyHabDemoSettings.csv

Run study or open builder?

Run

Stimulus presentation mode (Run only):  On





_images/NewPyHabStudy.png
L Al A= LX)

J NewPyHabProject.py 0|

#For-making PyHab studies-from a-blank-slate.-

#Simply hit-the-green running-silhouette-button-to-begin!-
#(You-can-also-press-CTRL-Ror-Command-R)
import-PyHabBuilder-as-PB

builder-=-PB.pyHabBuilder()

o N O oA W NN =





_images/CoderView.png
\/"A Experiment Demos Projec

Show Tab Bar -

Open Coder view  38L
Toggle readme |

Flow Larger =
Flow Smaller 8- |
Routine Larger 8+

Routine Smaller 3
Enter Full Screen 1






_static/ajax-loader.gif





_images/ShellTab.png
[ Output I Shell 1
~ PyShell in PsychoPy - type some commands!

Python 2.7.12 (v2.7.12:d33e@0cf91556, Jun 26 2016, 12:10:39)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help”, “"copyright”, "credits" or "license" for more information.

>>>






_images/SubjInfo.png
[ NON ] PyHabDemo Experiment
Subject info
Subject Number:
Subject ID:
sex:
DOB(month):
DOB(day):
DOB(year):

Cond: A

(o]






_static/comment-bright.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          PyHab Code Documentation
        


        		
          Installation
        


        		
          Quickstart guide
          
            		
              ManyBabies 4 setup
            


            		
              Creating a new PyHab project from scratch
            


            		
              Running the demo or a pre-made PyHab experiment
            


          


        


        		
          Builder
        


        		
          PyHab Class (base)
        


        		
          Preferential Looking
        


        		
          Head-turn Preference Procedure
        


        		
          Standalone Reliability
        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





